Перевод: со всех языков на все языки

со всех языков на все языки

theoretical waves

  • 1 theoretical waves

    Морской термин: теоретические волны

    Универсальный англо-русский словарь > theoretical waves

  • 2 theoretical waves

    English-Russian marine dictionary > theoretical waves

  • 3 theoretical

    English-Russian big polytechnic dictionary > theoretical

  • 4 теоретическая волна

    Русско-английский морской словарь > теоретическая волна

  • 5 теоретическая волна

    Русско-английский военно-политический словарь > теоретическая волна

  • 6 теоретический

    Русско-английский большой базовый словарь > теоретический

  • 7 теоретические волны

    Универсальный русско-английский словарь > теоретические волны

  • 8 Hertz, Heinrich Rudolph

    [br]
    b. 22 February 1857 Hamburg, Germany
    d. 1 January 1894 Bonn, Germany
    [br]
    German physicist who was reputedly the first person to transmit and receive radio waves.
    [br]
    At the age of 17 Hertz entered the Gelehrtenschule of the Johaneums in Hamburg, but he left the following year to obtain practical experience for a year with a firm of engineers in Frankfurt am Main. He then spent six months at the Dresden Technical High School, followed by year of military service in Berlin. At this point he decided to switch from engineering to physics, and after a year in Munich he studied physics under Helmholtz at the University of Berlin, gaining his PhD with high honours in 1880. From 1883 to 1885 he was a privat-dozent at Kiel, during which time he studied the electromagnetic theory of James Clerk Maxwell. In 1885 he succeeded to the Chair in Physics at Karlsruhe Technical High School. There, in 1887, he constructed a rudimentary transmitter consisting of two 30 cm (12 in.) rods with metal balls separated by a 7.5 mm (0.3 in.) gap at the inner ends and metallic plates at the outer ends, the whole assembly being mounted at the focus of a large parabolic metal mirror and the two rods being connected to an induction coil. At the other side of his laboratory he placed a 70 cm (27½ in.) diameter wire loop with a similar air gap at the focus of a second metal mirror. When the induction coil was made to create a spark across the transmitter air gap, he found that a spark also occurred at the "receiver". By a series of experiments he was not only able to show that the invisible waves travelled in straight lines and were reflected by the parabolic mirrors, but also that the vibrations could be refracted like visible light and had a similar wavelength. By this first transmission and reception of radio waves he thus confirmed the theoretical predictions made by Maxwell some twenty years earlier. It was probably in his experiments with this apparatus in 1887 that Hertz also observed that the voltage at which a spark was able to jump a gap was significantly reduced by the presence of ultraviolet light. This so-called photoelectric effect was subsequently placed on a theoretical basis by Albert Einstein in 1905. In 1889 he became Professor of Physics at the University of Bonn, where he continued to investigate the nature of electric discharges in gases at low pressure until his death after a long and painful illness. In recognition of his measurement of radio and other waves, the international unit of frequency of an oscillatory wave, the cycle per second, is now universally known as the Hertz.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1890.
    Bibliography
    Much of Hertz's work, including his 1890 paper "On the fundamental equations of electrodynamics for bodies at rest", is recorded in three collections of his papers which are available in English translations by D.E.Jones et al., namely Electric Waves (1893), Miscellaneous Papers (1896) and Principles of Mechanics (1899).
    Further Reading
    J.G.O'Hara and W.Pricha, 1987, Hertz and the Maxwellians, London: Peter Peregrinus. J.Hertz, 1977, Heinrich Hertz, Memoirs, Letters and Diaries, San Francisco: San Francisco Press.
    KF

    Biographical history of technology > Hertz, Heinrich Rudolph

  • 9 gruñir

    v.
    1 to growl, to snarl, to grunt.
    El viejo amargado gruñe por todo The grouch growls at everything.
    Los perros gruñen en la noche The dogs growl at night.
    2 to growl, to grouch.
    El viejo amargado gruñe por todo The grouch growls at everything.
    3 to growl at, to snarl at.
    Me gruñó el oso The bear growled at me.
    * * *
    Conjugation model [ MUÑIR], like link=muñir muñir
    1 to grunt
    * * *
    verb
    * * *
    VI
    1) [animal] to grunt, growl
    2) [persona] to grouse *, grumble
    * * *
    verbo intransitivo
    a) cerdo to grunt; perro to growl
    b) (fam) persona to grumble
    * * *
    = growl, grunt, snort, snarl, niggle, groan, grouch (about).
    Ex. 'Listen!' he growled, in a tone so dry, sarcastic and acrid that not another word was needed to indicate that he was not about to be upstaged by a 24 year old.
    Ex. 'Humph!' grunted the director, accepting the check with a preoccupied air = "¡Humph!" gruñó el director, aceptando el cheque con un aire preocupado.
    Ex. 'I have always attended those conferences,' he snorted.
    Ex. Wind raged over the sea; waves snarled and showed their teeth.
    Ex. The House of Commons passed the week in niggling without result over a profusion of theoretical issues.
    Ex. Young kids like listening to these shaggy dog stories, but don't usually 'get it', while parents generally groan over the punch lines.
    Ex. You can choose to grouch about what they don't have OR open your mind up and see what they have to offer.
    * * *
    verbo intransitivo
    a) cerdo to grunt; perro to growl
    b) (fam) persona to grumble
    * * *
    = growl, grunt, snort, snarl, niggle, groan, grouch (about).

    Ex: 'Listen!' he growled, in a tone so dry, sarcastic and acrid that not another word was needed to indicate that he was not about to be upstaged by a 24 year old.

    Ex: 'Humph!' grunted the director, accepting the check with a preoccupied air = "¡Humph!" gruñó el director, aceptando el cheque con un aire preocupado.
    Ex: 'I have always attended those conferences,' he snorted.
    Ex: Wind raged over the sea; waves snarled and showed their teeth.
    Ex: The House of Commons passed the week in niggling without result over a profusion of theoretical issues.
    Ex: Young kids like listening to these shaggy dog stories, but don't usually 'get it', while parents generally groan over the punch lines.
    Ex: You can choose to grouch about what they don't have OR open your mind up and see what they have to offer.

    * * *
    gruñir [I9 ]
    vi
    1 «cerdo» to grunt
    2 «perro» to growl
    3 ( fam); «persona» to grumble, grouse ( colloq)
    siempre está gruñendo she's always grumbling o grousing about something
    * * *

    gruñir ( conjugate gruñir) verbo intransitivo

    [ perro] to growl
    b) (fam) [ persona] to grumble

    gruñir verbo intransitivo
    1 (cerdo) to grunt
    2 (persona) to grumble
    ' gruñir' also found in these entries:
    Spanish:
    rezar
    English:
    growl
    - grunt
    - snarl
    - groan
    - grouse
    - snort
    * * *
    1. [perro] to growl
    2. [cerdo] to grunt
    3. [persona] to grumble
    * * *
    v/i
    1 ( quejarse) grumble, moan fam
    2 de perro growl; de cerdo grunt
    * * *
    gruñir {38} vi
    1) : to growl, to grunt
    2) : to grumble
    * * *
    1. (cerdo) to grunt
    2. (perro) to growl
    3. (persona) to grumble

    Spanish-English dictionary > gruñir

  • 10 Heaviside, Oliver

    [br]
    b. 18 May 1850 London, England
    d. 2 February 1925 Torquay, Devon, England
    [br]
    English physicist who correctly predicted the existence of the ionosphere and its ability to reflect radio waves.
    [br]
    Brought up in poor, almost Dickensian, circumstances, at the age of 13 years Heaviside, a nephew by marriage of Sir Charles Wheatstone, went to Camden House Grammar School. There he won a medal for science, but he was forced to leave because his parents could not afford the fees. After a year of private study, he began his working life in Newcastle in 1870 as a telegraph operator for an Anglo-Dutch cable company, but he had to give up after only four years because of increasing deafness. He therefore proceeded to spend his time studying theoretical aspects of electrical transmission and communication, and moved to Devon with his parents in 1889. Because the operation of many electrical circuits involves transient phenomena, he found it necessary to develop what he called operational calculus (which was essentially a form of the Laplace transform calculus) in order to determine the response to sudden voltage and current changes. In 1893 he suggested that the distortion that occurred on long-distance telephone lines could be reduced by adding loading coils at regular intervals, thus creating a matched-transmission line. Between 1893 and 1912 he produced a series of writings on electromagnetic theory, in one of which, anticipating a conclusion of Einstein's special theory of relativity, he put forward the idea that the mass of an electric charge increases with its velocity. When it was found that despite the curvature of the earth it was possible to communicate over very great distances using radio signals in the so-called "short" wavebands, Heaviside suggested the presence of a conducting layer in the ionosphere that reflected the waves back to earth. Since a similar suggestion had been made almost at the same time by Arthur Kennelly of Harvard, this layer became known as the Kennelly-Heaviside layer.
    [br]
    Principal Honours and Distinctions
    FRS 1891. Institution of Electrical Engineers Faraday Medal 1924. Honorary PhD Gottingen. Honorary Member of the American Association for the Advancement of Science.
    Bibliography
    1872. "A method for comparing electro-motive forces", English Mechanic (July).
    1873. Philosophical Magazine (February) (a paper on the use of the Wheatstone Bridge). 1889, Electromagnetic Waves.
    Further Reading
    I.Catt (ed.), 1987, Oliver Heaviside, The Man, St Albans: CAM Publishing.
    P.J.Nahin, 1988, Oliver Heaviside, Sage in Solitude: The Life and Works of an Electrical Genius of the Victorian Age, Institute of Electrical and Electronics Engineers, New York.
    J.B.Hunt, The Maxwellians, Ithaca: Cornell University Press.
    KF

    Biographical history of technology > Heaviside, Oliver

  • 11 Introspection

       1) Experimental Introspection Is the One Reliable Method of Knowing Ourselves
       When we are trying to understand the mental processes of a child or a dog or an insect as shown by conduct and action, the outward signs of mental processes,... we must always fall back upon experimental introspection... [;] we cannot imagine processes in another mind that we do not find in our own. Experimental introspection is thus our one reliable method of knowing ourselves; it is the sole gateway to psychology. (Titchener, 1914, p. 32)
       There is a somewhat misleading point of view that one's own experience provides a sufficient understanding of mental life for scientific purposes. Indeed, early in the history of experimental psychology, the main method for studying cognition was introspection. By observing one's own mind, the argument went, one could say how one carried out cognitive activities....
       Yet introspection failed to be a good technique for the elucidation of mental processes in general. There are two simple reasons for this. First, so many things which we can do seem to be quite unrelated to conscious experience. Someone asks you your name. You do not know how you retrieve it, yet obviously there is some process by which the retrieval occurs. In the same way, when someone speaks to you, you understand what they say, but you do not know how you came to understand. Yet somehow processes take place in which words are picked out from the jumble of sound waves which reach your ears, in-built knowledge of syntax and semantics gives it meaning, and the significance of the message comes to be appreciated. Clearly, introspection is not of much use here, but it is undeniable that understanding language is as much a part of mental life as is thinking.
       As if these arguments were not enough, it is also the case that introspective data are notoriously difficult to evaluate. Because it is private to the experiencer, and experience may be difficult to convey in words to somebody else. Many early introspective protocols were very confusing to read and, even worse, the kinds of introspection reported tended to conform to the theoretical categories used in different laboratories. Clearly, what was needed was both a change in experimental method and a different (non-subjective) theoretical framework to describe mental life. (Sanford, 1987, pp. 2-3)

    Historical dictionary of quotations in cognitive science > Introspection

  • 12 Braun, Karl Ferdinand

    [br]
    b. 6 June 1850 Fulda, Hesse, Germany
    d. 20 April 1918 New York City, New York, USA
    [br]
    German physicist who shared with Marconi the 1909 Nobel Prize for Physics for developments in wireless telegraphy; inventor of the cathode ray oscilloscope.
    [br]
    After obtaining degrees from the universities of Marburg and Berlin (PhD) and spending a short time as Headmaster of the Thomas School in Berlin, Braun successively held professorships in theoretical physics at the universities of Marburg (1876), Strasbourg (1880) and Karlsruhe (1883) before becoming Professor of Experimental Physics at Tübingen in 1885 and Director and Professor of Physics at Strasbourg in 1895.
    During this time he devised experimental apparatus to determine the dielectric constant of rock salt and developed the Braun high-tension electrometer. He also discovered that certain mineral sulphide crystals would only conduct electricity in one direction, a rectification effect that made it possible to detect and demodulate radio signals in a more reliable manner than was possible with the coherer. Primarily, however, he was concerned with improving Marconi's radio transmitter to increase its broadcasting range. By using a transmitter circuit comprising a capacitor and a spark-gap, coupled to an aerial without a spark-gap, he was able to obtain much greater oscillatory currents in the latter, and by tuning the transmitter so that the oscillations occupied only a narrow frequency band he reduced the interference with other transmitters. Other achievements include the development of a directional aerial and the first practical wavemeter, and the measurement in Strasbourg of the strength of radio waves received from the Eiffel Tower transmitter in Paris. For all this work he subsequently shared with Marconi the 1909 Nobel Prize for Physics.
    Around 1895 he carried out experiments using a torsion balance in order to measure the universal gravitational constant, g, but the work for which he is probably best known is the addition of deflecting plates and a fluorescent screen to the Crooke's tube in 1897 in order to study the characteristics of high-frequency currents. The oscilloscope, as it was called, was not only the basis of a now widely used and highly versatile test instrument but was the forerunner of the cathode ray tube, or CRT, used for the display of radar and television images.
    At the beginning of the First World War, while in New York to testify in a patent suit, he was trapped by the entry of the USA into the war and remained in Brooklyn with his son until his death.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Marconi) 1909.
    Bibliography
    1874, "Assymetrical conduction of certain metal sulphides", Pogg. Annal. 153:556 (provides an account of the discovery of the crystal rectifier).
    1897, "On a method for the demonstration and study of currents varying with time", Wiedemann's Annalen 60:552 (his description of the cathode ray oscilloscope as a measuring tool).
    Further Reading
    K.Schlesinger \& E.G.Ramberg, 1962, "Beamdeflection and photo-devices", Proceedings of the Institute of Radio Engineers 50, 991.
    KF

    Biographical history of technology > Braun, Karl Ferdinand

  • 13 Scott de Martinville, Edouard-Léon

    SUBJECT AREA: Recording
    [br]
    b. 25 April 1817 Paris, France
    d. 29 April 1879 Paris, France
    [br]
    French amateur phonetician, who developed a recorder for sound waves.
    [br]
    He was the descendant of a Scottish family who emigrated to France in 1688. He trained as a printer and later became a proof corrector in printing houses catering predominantly for scientific publishers. He became interested in shorthand systems and eventually turned his interest to making a permanent record of sounds in air. At the time it was already known (Young, Duhamel, Wertheim) to record vibrations of bodies. He made a theoretical study and deposited under sealed wrapper a note in the Académie des Sciences on 26 January 1857. He approached the scientific instrument maker Froment and was able to pay for the manufacture of one instrument due to support from the Société d'Encouragement à l'Industrie Nationale. This funding body obtained a positive report from the physicist Lissajous on 6 January 1858. A new model phonautograph was constructed in collaboration with the leading scientific instrument maker in Paris at the time, Rudolph Koenig, and a contract was signed in 1859. The instrument was a success, and Koenig published a collection of traces in 1864.
    Although the membrane was parallel to the rotating surface, a primitive lever system generated lateral movements of a bristle which scratched curves in a thin layer of lampblack on the rotating surface. The curves were not necessarily representative of the vibrations in the air. Scott did not imagine the need for reproducing a recorded sound; rather, his intention was to obtain a trace that would lend itself to mathematical analysis and visual recognition of sounds. Obviously the latter did not require the same degree of linearity as the former. When Scott learned that similar apparatus had been built independently in the USA, he requested that his sealed wrapper be opened on 15 July 1861 in order to prove his scientific priority. The contract with Koenig left Scott without influence over his instrument, and eventually he became convinced that everyone else, including Edison in the end, had stolen his invention. Towards the end of his life he became interested mainly in the history of printing, and he was involved in the publishing of a series of books about books.
    [br]
    Bibliography
    25 March 1857, amended 29 July 1859, French patent no. 31,470.
    Further Reading
    P.Charbon, 1878, Scott de Martinville, Paris: Hifi Stereo, pp. 199–205 (a good biography produced at the time of the centenary of the Edison phonograph).
    V.J.Philips, 1987, Waveforms, Bristol: Adam Hilger, pp. 45–8 (provides a good account of the importance of his contributions to accurate measurements of temporal phenomena).
    GB-N

    Biographical history of technology > Scott de Martinville, Edouard-Léon

См. также в других словарях:

  • Theoretical and experimental justification for the Schrödinger equation — The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are… …   Wikipedia

  • Theoretical astronomy — Nucleosynthesis Stellar nucleosynthesis Big Bang nucleosynthesis Supernova nucleosynthesis Cosmic ray spallation …   Wikipedia

  • Mathematical and theoretical biology — is an interdisciplinary scientific research field with a range of applications in biology, medicine and biotechnology.[1] The field may be referred to as mathematical biology or biomathematics to stress the mathematical side, or as theoretical… …   Wikipedia

  • Dispersion (water waves) — This article is about dispersion of waves on a water surface. For other forms of dispersion, see Dispersion (disambiguation). In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of… …   Wikipedia

  • Lamb waves — propagate in solid plates. They are elastic waves whose particle motion lies in the plane defined by the plate normal and the direction of wave propagation. In 1917, the English mathematician Horace Lamb published his classic analysis and… …   Wikipedia

  • Perimeter Institute for Theoretical Physics — Perimeter Institute of Theoretical Physics Abbreviation PI Formation 1999 Type Research institute …   Wikipedia

  • Nonlinear X-waves — In physics, a Nonlinear X wave (abbr. NLX) is a multi dimensional wave which can travel without distortion.At variance with X waves, a Nonlinear X wave does exist in the presence of nonlinearity, and in many cases it self generates from a… …   Wikipedia

  • cosmos — /koz meuhs, mohs/, n., pl. cosmos, cosmoses for 2, 4. 1. the world or universe regarded as an orderly, harmonious system. 2. a complete, orderly, harmonious system. 3. order; harmony. 4. any composite plant of the genus Cosmos, of tropical… …   Universalium

  • light — light1 lightful, adj. lightfully, adv. /luyt/, n., adj., lighter, lightest, v., lighted or lit, lighting. n. 1. something that makes things visible or affords illumination: All colors depend on light. 2. Physics …   Universalium

  • Nobel Prizes — ▪ 2009 Introduction Prize for Peace       The 2008 Nobel Prize for Peace was awarded to Martti Ahtisaari, former president (1994–2000) of Finland, for his work over more than 30 years in settling international disputes, many involving ethnic,… …   Universalium

  • physics — /fiz iks/, n. (used with a sing. v.) the science that deals with matter, energy, motion, and force. [1580 90; see PHYSIC, ICS] * * * I Science that deals with the structure of matter and the interactions between the fundamental constituents of… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»